• Главная
  • О сайте
  • Контакты
idea
  • Архитектура
  • Астрономия и космонавтика
  • Биология
  • География
  • Законодательство и право
  • Иностранные языки
  • Искусство, Культура
  • История
  • Компьютеры, Программирование
  • Литература
  • Математика
  • Медицина
  • Психология, Общение, Человек
  • Радиоэлектроника
  • Разное
  • Социология
  • Физика
  • Физкультура и Спорт, Здоровье
  • Философия
  • Химия
  • Экология
  • Экономика и Финансы

Статистика

  • Рефераты (29404)
  • Курсовые (3)
  • Доклады (14)
  • Контрольные (5)
  • Отчеты (1)

Сервисы

Тест IQ

  • Тест IQ Online
  • Описание IQ-тестов

ЕГЭ

  • Примеры заданий ЕГЭ
  • Информация по EГЭ


  • Главная
    страница

  • Каталог
    рефератов

  • IQ-тест
    online

  • Добавить
    свой реферат

Большой выбор рефератов на разные темы

  • Медицина
  • Психология, Общение, Человек
  • Социология
  • Биология
  • Иностранные языки
  • Экономика и Финансы
  • Литература

Электрический ток в вакуме. Электронные лампы. Их применение

Электроника и радио почти ровесники. Правда, поначалу радио обходилось без помощи своей сверстницы, но позднее электронные приборы стали материальной основой радио, или, как говорят, его элементарной базой. Начало электроники можно отнести к 1883 году, когда знаменитый Томас Альфа Эдисон, пытаясь продлить срок службы осветительной лампы с угольной нитью накаливания, ввел в баллон лампы, из которой откачан воздух, металлический электрод. Именно этот опыт привел Эдисона к его единственному фундаментальному научному открытию, которое легло в основу всех электронных ламп и всей электроники дотранзисторного периода. Открытое им явление впоследствии получило название термоэлектронной эмиссии. Внешне опыт Эдисона выглядел довольно просто. К выводу электрода и одному из выводов раскаленной электрическим током нити он подсоединил батарею и гальванометр. Стрелка гальванометра отклонялась всякий раз, когда к электроду подсоединялся плюс батареи, а к нити – минус. Если полярность менялась, то ток в цепи прекращался. Эдисон обнародовал этот эффект и получил патент на открытие. Правда, работу свою он, как говорится, до ума не довел и физическую картину явления не объяснил. В это время электрон еще не был открыт, а понятие «термоэлектронная эмиссия», естественно, могло появиться лишь после открытия электрона. Вот в чем ее суть. В раскаленной металлической нити скорость движения и энергия электронов повышаются настолько, что они отрываются от поверхности нити и свободным потоком устремляются в окружающее ее пространство. Вырывающиеся из нити электроны можно уподобить ракетам, преодолевшим силу земного притяжения. Если к электроду будет присоединен плюс батареи, то электрическое поле внутри баллона между нитью накаливания и электродом устремит к нему электроны. То есть внутри лампы потечет электрический ток. Поток электронов в вакууме является разновидностью электрического тока. Такой электрический ток в вакууме можно получить, если в сосуд, откуда тщательно откачивается воздух, поместить нагреваемый катод, являющийся источником «испаряющихся» электронов, и анод. Между катодом и анодом создается электрическое поле, сообщающее электронам скорости в определенном направление. В электровакуумных приборах для эмиссии электронов используется специальный электрод, называемый катодом. Нагрев осуществляется за счет электрического тока, который пропускает через нить накала, как в электроплитке через спираль. Этот ток называется током накала. В приборах прямого накала сама нить является катодом и эмитирует электроны. В приборах косвенного накала нить подогревается металлический цилиндр, изолированный от нее, который и служит катодом. Для получения приемлемой эмиссии электронов катоды необходимо нагревать до очень высоких температур порядка 2...3 тысяч градусов. Поэтому нити накала приходится выполнять из тугоплавких металлов, обычно используется вольфрам. Но и вольфрамовая нить накала при такой температуре быстро выходит из строя, так как проволоку абсолютно одинакового сечения по всей длине сделать невозможно. В тех местах, где сечение проволоки чуть меньше, происходит местный перегрев, отчего в этом месте сечение становится еще меньше, а это приводит к еще большему нагреву. Оказалось, что если нанести на поверхность вольфрама тонкий слой окиси или щелочного металла, эмиссия электронов с такого оксидированного или активированного слоя резко увеличивается. Оксидированный вольфрам при температуре 730 градусов Цельсия обеспечивает такую же эмиссию, как не оксидированный при температуре 1580 градусов Цельсия. Поэтому в электровакуумных приборах за редкими исключениями используются оксидированные катоды. В приборах прямого накала оксидный слой наносится непосредственно на вольфрамовую нить. В приборах косвенного накала оксидный слой наносится на катод, который обычно выполняется из никеля. Вакуумный диод представляет собой двухэлектродный прибор. Одним из его электродов является катод прямого накала или подогревный. Второй электрод называется анодом. Конструктивно анод обычно выполнен в виде металлического цилиндра, на оси которого расположен катод. Вся система заключена в стеклянный или металлический баллон, из которого откачан воздух до высокой степени вакуума. Выводы подогревателя, катода и анода впаяны в стекло баллона. При металлическом баллоне один из его торцов закрыт стеклянным диском с впаянными выводами, который приварен к баллону. Если на анод подать положительное напряжение относительно катода, электрическое поле в пространстве между анодом и катодом вынуждает электроны из электронного облака двигаться к аноду. Их убыль в электронном облаке покрываться новыми электронами за счет термоэлектронной эмиссии катода. В цепи, соединяющий диод с источником питания, возникает ток, направление которого, как обычно, противоположно направлению потока электронов. Условное графическое обозначение вакуумного диода и его вольт – амперная характеристика показана на рис. 1. Выводы нити накала показаны стрелками. Для борьбы с динатронным эффектом в конструкцию тетродов вводят специальные лучеобразующие пластины, которые концентрируют электронный поток на небольшой части поверхности анода, где создается пространственный заряд, препятствующий обратному потоку вторичных электронов на экранную сетку. Такие тетроды называются лучевыми. Другой способ борьбы с динатронным эффектом состоит в установке еще одной сетки между экранной сеткой и анодом. Она носит название защитной или антидинотродной сетки и соединяется с катодом внутри или снаружи лампы, для чего имеется отельный вывод. Такие пятиэлектродные лампы называются пентодами. Антидинатронная сетка выполняется редкой, на поток быстрых первичных электронов влияния не оказывает, медленные же вторичные электроны отталкиваются ею обратно на анод. К многоэлектронным электронным лампам относятся лампы, имеющие более трех сеток, например, гептоды, у которых пять сеток. Гептоды предназначены для преобразования частоты сигнала и содержит две раздельные управляющие сетки. Очередность расположения сеток при счете от катода следующая: первая сетка является первой управляющей, вторая сетка – экранная, далее следует вторая управляющая сетка, за ней еще одна экранная и, наконец, антидинатронная сетка. Экранные сетки обычно соединены внутри ламп между собой и имеют общий вывод. Вольт – амперные характеристики гептодов такие же, как у пентодов, а наличие экранной сетки между управляющими снижает паразитную емкость между ними. Иногда используется устаревшее название гентода – пентагрид, что в переводе обозначает пять сеток. Электронно-лучевой трубкой называется электровакуумный прибор, предназначенный для преобразования электрических сигналов в видимое изображение, или наоборот. Существуют несколько разновидностей электронно-лучевых трубок по их названию: осциллографические, приемные телевизионные, телевизионные передающие и специальные. Осциллографические трубки относятся к трубкам с электростатическими отклонениями луча. Условное графическое обозначение осциллографической трубки приведено на рис. 4. К приемным электронно-лучевым трубкам относится черно- белые и цветные кинескопы. Устройство черно-белого кинескопа ничем практически не отличается от устройства трубки с магнитным отклонением луча. В прожектор лишь добавлен ускоряющий электрод между модулятором и первым анодом. Промышленность выпускает самые разные кинескопы с размером экрана по диагонали от 8 до 67 см. Все современные кинескопы имеют прямоугольны экран с соотношением сторон в приделах 3:4 до 4:5, что примерно соответствует формату телевизионного изображения Цветные кинескопы содержат три электронных прожектора и экран, покрытый люминофорами трех цветов – красного, синего и зеленого свечения. В настоящее время промышленность выпускает цветные кинескопы двух различных конструкций. У кинескопов с дельтовидным расположением прожекторов они расположены в вершинах треугольника, центр которого находится на оси кинескопа. У кинескопов с планарным расположением прожекторов они расположены в одной плоскости, один находится на оси кинескопа, а два других – по обе стороны от первого. Развитие способов передачи изображений и измерительной техники сопровождалось дальнейшей разработкой и усовершенствованием различных электровакуумных приборов, радиоламп и электронографических приборов для осциллографов, радиолокации и телевидения.


  • Главная|
  • О сайте|
  • Контакты|
  • Каталог|
  • Добавить реферат|
  • ЕГЭ|
  • IQ-тест|
  • Карта сайта

© Рефератус.рф

Разработка сайта портала Inspire-technology.com